8 research outputs found

    Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study

    Get PDF
    To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-2

    The Developing Human Connectome Project Neonatal Data Release

    Get PDF
    The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed

    Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study

    Get PDF
    To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-2

    Energy reconstruction of electromagnetic showers from pi0 decays with the ICARUS T600 Liquid Argon TPC

    No full text
    We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of pi(0) mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The (gamma,gamma) invariant mass was found to be consistent with the value of the pi(0) mass. The resolution of the reconstructed pi(0) mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a pi(0) mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photo-multiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate pi(0) events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with pi(0) production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data

    Characterization of ETL 9357FLA photomultiplier tubes for cryogenic temperature applications.

    No full text
    We carried out a careful evaluation of the performance of the large cathode area ETL 9357FLA photomultiplier tube operating at cryogenic temperature. The measurements were focused on evaluating the parameters which mainly characterize the operating performances of the device down to 77 K and the spread of the distinctive features over 54 samples assembled in the ICARUS apparatus. The results that we obtained demonstrate that the photomultiplier is suited for light detection in such unconventional operating conditions, certifying this device for the direct measurement of scintillation light coming from noble-gas liquids in detectors dedicated to neutrino physics and dark matter research
    corecore